精英家教网 > 小学数学 > 题目详情
用同一种颜色对4x4方格的6个格子进行涂色,如果某列有涂色的方格则必须从最底下的格子逐格往上涂色,相邻两列中左侧的涂色的方格数大于或等于右侧涂色的方格数(如图),那么共有
8
8
种涂色的图案.
分析:按照要求把4x4方格的6个格子进行涂色,左侧的涂色的方格数大于或等于右侧涂色的方格数,把6分成几个数的和,左边的数最大是4,例如4+1+1=6,涂在第一列开始或从第二列开始有2种图案;
4+2=6,分别从1、2、3列开始涂色,有3种图案;
3+2+1,分别从1、2列开始涂色,有2种图案;
3+1+1+1,只有从第1列开始涂色1种图案;
把它们加起来,即可得解.
解答:解:如图,

2+3+2+1=8(种),
答:那么共有8种涂色的图案.
故答案为:8.
点评:正确理解题意,把6分成几个数的和,然后涂色是解决此题的关键.
练习册系列答案
相关习题

同步练习册答案