【题目】沿圆锥的高把圆锥切开成两部分,截面是一个等腰三角形. (判断对错)
【答案】√
【解析】
试题分析:从圆锥的顶点向底面作垂直切割,得到的是一个以底面直径为底,以圆锥的高为高,以侧面母线为腰的三角形,因为圆锥的母线相等,所以得到的三角形是等腰三角形,由此即可判断.
解:从圆锥的顶点向底面作垂直切割,得到的是一个以底面直径为底,以圆锥的高为高,以侧面母线为腰的三角形,因为圆锥的母线相等,所以得到的三角形是等腰三角形,
所以,沿圆锥的高把圆锥切开成两部分,截面是一个等腰三角形.这种说法是正确的.
故答案为:√.
科目:小学数学 来源: 题型:
【题目】一个三角形与一个平行四边形等底等高,平行四边形的面积是20平方米,这个三角形的面积是 平方米;如果三角形的面积是68平方厘米,那么平行四边形的面积是 平方厘米.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com