分析 原计划按10:7分配给甲乙两个筑路队修,即原计划甲完成全部的$\frac{10}{10+7}$,乙完成全部的$\frac{7}{10+7}$,实际甲队修了2000米,超过分配任务的$\frac{1}{4}$,即完成了分配任务的1+$\frac{1}{4}$,即全部的$\frac{10}{10+7}$×(1+$\frac{1}{4}$),根据分数除法的意义,全部任务是2000÷[$\frac{10}{10+7}$×(1+$\frac{1}{4}$)]米,又乙队因事只完成了分配任务的60%,即完成了全部的$\frac{7}{10+7}$×60%,所以乙实际修了2000÷[$\frac{10}{10+7}$×(1+$\frac{1}{4}$)]×$\frac{7}{10+7}$×60%米.
解答 解:2000÷[$\frac{10}{10+7}$×(1+$\frac{1}{4}$)]×$\frac{7}{10+7}$×60%
=2000÷[$\frac{10}{17}$×$\frac{5}{4}$]×$\frac{7}{17}$×60%
=2000$÷\frac{25}{34}$×$\frac{7}{17}$×60%
=672(米)
答:乙实际修了672米.
点评 首先根据已条件求出两队分配的任务分别占总任务的分率,进而求出总任务是完成本题的关键.
科目:小学数学 来源: 题型:解答题
查看答案和解析>>
科目:小学数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com