分析:几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.360°为正多边形一个内角的整数倍才能单独镶嵌.任意一种多边形能进行镶嵌,说明它的内角和应能整除360°.
解答:解:梯形的内角和是360°,放在同一顶点处4个即能密铺;
任意三角形的内角和是180°,放在同一顶点处6个即能密铺;
正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能密铺;
正六边形的每个内角是120°,能整除360°,能密铺;
故选:D.
点评:考查了平面镶嵌(密铺)问题,两种或两种以上几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.