考点:求几个数的最大公因数的方法,求几个数的最小公倍数的方法
专题:数的整除
分析:求最大公约数也就是这几个数的公有质因数的连乘积,最小公倍数是公有质因数与独有质因数的连乘积,对于三个数来说:三个数的公有质因数连乘积是最大公约数,三个数的公有质因数、两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数,由此解决问题即可.
解答:
解:32=2×2×2×2×2,
48=2×2×2×2×3,
60=2×2×3×5,
所以32,48和60的最大公约数是2×2=4,最小公倍数是2×2×2×2×2×3×5=480.
答:32,48和60最大公约数是4,最小公倍数是480.
点评:此题主要考查求三个数的最大公约数与最小公倍数的方法:三个数的公有质因数连乘积是最大公约数,三个数的公有质因数、两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除解答.