A. | 10个 | B. | 20个 | C. | 40个 | D. | 80个 |
分析 要想使分成的小正方形个数最少,那么要使小正方形的边长最大,由此只要求得小正方形的边长最大是多少,也就是求得10和8的最大公因数是多少,由此即可小正方形的边长从而求得分得的小正方形的个数,从而进行选择.
解答 解:10=2×5,
8=2×2×2,
所以10和8的最大公因数是:2,即小正方形的边长是2厘米,
长方形纸的长边可以分;10÷2=5(个),
宽边可以分:8÷2=4(个),
一共可以分成:5×4=20(个).
故选:B.
点评 根据题干得出,当小正方形边长最长时分得的小正方形个数最少,最长边长就是这两个数的最大公因数,这是解决本题的关键.
科目:小学数学 来源: 题型:填空题
查看答案和解析>>
科目:小学数学 来源: 题型:解答题
45:60 | 0.56:0.875 | $\frac{3}{5}:\frac{1}{2}$ |
$\frac{5}{12}$:$\frac{3}{4}$:$\frac{5}{6}$ | 0.5米:75厘米 | 2500毫升:3升 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com