分析 (1)$\frac{x}{8.1}=\frac{4}{10.8}$,根据比例的基本性质:两内项之积等于两外项之积得:10.8x=8.1×4,再利用等式的性质解方程;
(2)$\frac{1}{18}$÷$\frac{2}{9}$=x:$\frac{6}{13}$,首先将原式转化为:$\frac{1}{18}:\frac{2}{9}$=x:$\frac{6}{13}$,根据比例的基本性质:两内项之积等于两外项之积得:$\frac{2}{9}x=\frac{1}{18}×\frac{3}{16}$,再利用等式的性质解方程;
(3)5x-5×$\frac{1}{3}$=0.8,首先将方程化简为:5x$-\frac{5}{3}$=$\frac{4}{5}$,根据等式的性质,两边首先同时加$\frac{5}{3}$,然后两边同时乘$\frac{1}{5}$即可;
(4)$\frac{5}{48}$x-2=0.5,根据等式的性质两边首先同时加2,再把两边同时乘$\frac{48}{5}$即可.
解答 解:(1)$\frac{x}{8.1}=\frac{4}{10.8}$
10.8x=8.1×4
10.8x=32.4
x=3;
(2)$\frac{1}{18}$÷$\frac{2}{9}$=x:$\frac{6}{13}$
$\frac{1}{18}:\frac{2}{9}$=x:$\frac{6}{13}$
$\frac{2}{9}x$=$\frac{1}{18}×\frac{6}{13}$
$\frac{2}{9}$x=$\frac{1}{39}$
$\frac{2}{9}$x×$\frac{9}{2}$=$\frac{1}{39}×\frac{9}{2}$
x=$\frac{3}{26}$;
(3)5x-5×$\frac{1}{3}$=0.8
5x$-\frac{5}{3}$=$\frac{4}{5}$
5x$-\frac{5}{3}+\frac{5}{3}$=$\frac{4}{5}+\frac{5}{3}$
5x=$\frac{37}{15}$
5x×$\frac{1}{5}$=$\frac{37}{15}×\frac{1}{5}$
x=$\frac{37}{75}$;
(4)$\frac{5}{48}$x-2=0.5
$\frac{5}{48}x-2+2$=0.5+2
$\frac{5}{48}x×\frac{48}{5}$=2.5×$\frac{48}{5}$
x=24.
点评 此题考查的目的是理解掌握等式的性质、比例的基本性质,以及解方程、解比例的方法.
科目:小学数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com