分析 先用①+③,得3x+y=4④,再用①×2+②,得x+y=2⑤,④-⑤即可得x的值,再求y的值,最后求z的值即可.
解答 解:$\left\{\begin{array}{l}{x+2y-z=2①}\\{3x+y+2z=6②}\\{2x-y+z=2③}\end{array}\right.$
①+③,得3x+y=4④,
①×2+②,得x+y=2⑤,
④-⑤,得2x=2,
x=1,
把x=1代入⑤,得y=1,
把x=1,y=1代入①,得z=1<
所以原方程组的解为$\left\{\begin{array}{l}{x=1}\\{y=1}\\{z=1}\end{array}\right.$.
点评 此题考查了三元一次方程组的解法,把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成元该未知数的二元一次方程组.
科目:小学数学 来源: 题型:解答题
38×3○38+3 | 70+0○70×0 | 49×7○7×49 | 96÷2○96÷3 |
250×3○250×4 | 105×6○106×5 | 1+2+3○1×2×3 | 25×4×0○25×4+0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com