分析 把这项工程的工作总量看成单位“1”,小华做需要3天,那么小华的工作效率就是$\frac{1}{3}$,小李做需要4天,小李的工作效率就是$\frac{1}{4}$,小花做需要5天,小花的工作效率就是$\frac{1}{5}$,它们的和就是合作的工作效率,再用工作量1除以合作的工作效率,即可求出合作需要的天数.
解答 解:1÷($\frac{1}{3}$+$\frac{1}{4}$+$\frac{1}{5}$)
=1÷$\frac{47}{60}$
=$\frac{60}{47}$(天)
答:三人合作需要$\frac{60}{47}$天.
点评 解决本题把工作总量看成单位“1”,分别表示出3人的工作效率,再根据合作的工作时间=工作量÷工作效率和求解.
科目:小学数学 来源: 题型:解答题
查看答案和解析>>
科目:小学数学 来源: 题型:计算题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com