精英家教网 > 小学数学 > 题目详情
如图,将四边形ABCD的四条边分别延长一段,得∠CBE、∠BAH、∠ADG、∠DCF,那么,这四个角的和等于
360°
360°
分析:根据平角的定义,可以得出∠CBE+∠1=∠BAH+∠2=∠ADG+∠3=∠DCF+∠4=180°,又因为四边形的内角和是360°,所以可得:∠1+∠2+∠3+∠4=360°,由此利用代换的思想即可计算得出∠CBE、∠BAH、∠ADG、∠DCF,这四个角的和.
解答:解:根据题干分析可得:
∠CBE+∠1+∠BAH+∠2+∠ADG+∠3+∠DCF+∠4=180°×4=720°,
又因为:∠1+∠2+∠3+∠4=360°(四边形内角和定理),
所以∠CBE+∠BAH+∠ADG+∠DCF=720°-(∠1+∠2+∠3+∠4)=720°-360°=360°,
答:这四个角的度数之和是360°.
故答案为:360°.
点评:此题考查了利用平角的定义和四边形内角和定理证明四边形的外角和是360°的推理方法.
练习册系列答案
相关习题

科目:小学数学 来源: 题型:

如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为(  )

查看答案和解析>>

科目:小学数学 来源: 题型:

Rt△ABC与Rt△FED是两块全等的含30°、60°的三角板,按如图①所示拼在一起,CB与DE重合.
(1)求证:四边形ABFC为平行四边形;
(2)取BC中点O,将△ABC绕点O顺时针方向旋转到如图②中△A′B′C′位置,直线B'C'与AB、CF分别相交于P、Q两点,猜想OQ、OP长度的大小关系,并证明你的猜想;
(3)在(2)的条件下,指出当旋转角为多少度时,四边形PCQB为菱形(不要求证明).

查看答案和解析>>

科目:小学数学 来源: 题型:

在平面内,旋转变换试指某一个图形绕一个定点按顺时针或逆时针旋转一定的角度而得到新位置图形的一种变换.

活动一:如图①,在Rt△ABC中,D为斜边AB上的一点,AD=2,BD=1,且四边形DECF是正方形,在求阴影部分面积时,小明运用图形旋转的方法,将△DBF绕点D逆时针旋转90°,得到△DGE(如图②所示),小明一眼就看到答案,请你写出阴影部分的面积
1
1

活动二:如图③,在四边形ABCD中,AB=AD,∠BAD=∠C=90°,BC=5,CD=3,过点A作AE⊥BC,垂足为点E,小明仍运用图形旋转的方法,将△ABE绕点A逆时针旋转90°,得到△ADG(如图④所示),则:
(1)四边形AECG是怎样的特殊四边形?答:
正方形
正方形

(2)AE的长是
4
4

活动三:如图⑤,在四边形ABCD中,AB⊥AD,CD⊥AD,将BC绕点B逆时针旋转90°得到线段BE,连接AE.若AB=2,DC=4,求△ABE的面积.

查看答案和解析>>

科目:小学数学 来源: 题型:

如图,在直角三角形ABC中,∠ACB=90°,AC=BC=10,将△ABC绕点B沿顺时针方向旋转90°得到△A1BC1
(1)线段A1C1的长度是
10
10
,∠CBA1的度数是
135°
135°

(2)连结CC1,求证:四边形CBA1C1是平行四边形.

查看答案和解析>>

科目:小学数学 来源: 题型:解答题

在平面内,旋转变换试指某一个图形绕一个定点按顺时针或逆时针旋转一定的角度而得到新位置图形的一种变换.

活动一:如图①,在Rt△ABC中,D为斜边AB上的一点,AD=2,BD=1,且四边形DECF是正方形,在求阴影部分面积时,小明运用图形旋转的方法,将△DBF绕点D逆时针旋转90°,得到△DGE(如图②所示),小明一眼就看到答案,请你写出阴影部分的面积______.
活动二:如图③,在四边形ABCD中,AB=AD,∠BAD=∠C=90°,BC=5,CD=3,过点A作AE⊥BC,垂足为点E,小明仍运用图形旋转的方法,将△ABE绕点A逆时针旋转90°,得到△ADG(如图④所示),则:
(1)四边形AECG是怎样的特殊四边形?答:______;
(2)AE的长是______.
活动三:如图⑤,在四边形ABCD中,AB⊥AD,CD⊥AD,将BC绕点B逆时针旋转90°得到线段BE,连接AE.若AB=2,DC=4,求△ABE的面积.

查看答案和解析>>

同步练习册答案