【题目】(4分)一片均匀生长的草地,如果有15头牛吃草,那么8天可以把草全部吃完;如果起初这15头牛在草地上吃了2天后,又来了2头牛,则总共7天就可以把草吃完.如果起初这15头牛吃了2天后,又来了5头牛,再过多少天可以把草吃完?
【答案】4天
【解析】
试题分析:设每头牛每天吃“1”份草,则15头牛8天吃:15×8=120(份),15头牛吃了2天,又来了2头牛总共7天共吃,2×15+17×5=115(份),
那么8﹣7=1(天)共长草5份,原来有草:120﹣5×8=80(份),15头牛2天吃草:15×2=30(份),还剩80+5×2﹣30=60(份).那么又来了5头牛,新长出的草5头牛吃,20﹣5头牛可吃原有的草:60÷(20﹣5),计算即可.
解:设每头牛每天吃“1”份草.
则15头牛8天吃:15×8=120(份)
15头牛吃了2天,又来了2头牛总共7天共吃:2×15+17×5=115(份)
那么8﹣7=1(天)共长草120﹣115=5(份)
原来有草:120﹣5×8=80(份)
15头牛2天吃草:15×2=30(份),还剩80+5×2﹣30=60(份)
那么又来了5头牛,20头牛可吃:60÷(20﹣5)=4(天)
答:再过4天可以把草吃完.
科目:小学数学 来源: 题型:
【题目】(4分)有一片牧场,草每天都在均匀的生长.如果在牧场上放养24头牛,那么6天就可以把草吃完;如果放养21头牛,8天可以把草吃完.那么:
(1)要让草永远吃不完,最多放养多少头牛;
(2)如果放养36头牛,多少天可以把草吃完?
查看答案和解析>>
科目:小学数学 来源: 题型:
【题目】(4分)一片均匀生长的草地,可以供18头牛吃40天,或者供12头牛与36只羊吃25天,如果1头牛每天的吃草量相当于3只羊每天的吃草量.请问:这片草地让17头牛与多少只羊一起吃,刚好16天吃完?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com