精英家教网 > 小学数学 > 题目详情
一副扑克牌共54张,至少从中摸出多少张牌,才能保证有4张牌的花色情况是相同的?(大王、小王不算花色)
分析:把4种不同花色看作4个抽屉,把4种不同花色的扑克牌看作元素,从最不利情况考虑,先摸出大王、小王两张,然后每个抽屉先放3个元素,共需要3×4=12个,再取出1张不论是什么花色,总有一个抽屉里的扑克和它同色,所以至少要取出:2+12+1=15(张),据此解答.
解答:解:2+3×4+1=15(张);
答:至少从中摸出多少张牌,才能保证有4张牌的花色情况是相同的.
点评:抽屉原理问题的解答思路是:要从最不利情况考虑,准确地建立抽屉和确定元素的总个数,本题的难点是理解要求“至少数”必须先摸出14张.
练习册系列答案
相关习题

科目:小学数学 来源: 题型:

一副扑克牌共54张,两人轮流拿牌,每人每次只能拿1-4张,谁拿到最后1张牌谁就赢.先拿牌的人怎样才能确保胜利?

查看答案和解析>>

科目:小学数学 来源: 题型:

一副扑克牌共54张.任取一张,是红桃K的可能性是
1
54
1
54
,是K的可能性是
2
27
2
27

查看答案和解析>>

科目:小学数学 来源: 题型:

一副扑克牌共54张,至少从中取出9张,才能保证其中必有3种不同的花色.
×
×

查看答案和解析>>

科目:小学数学 来源: 题型:

一副扑克牌共54张,最上面的一张是红桃K.如果每次把最上面的12张牌移到最下面而不改变它们的顺序及朝向,那么,至少经过
9
9
次移动,红桃K才会又出现在最上面.

查看答案和解析>>

同步练习册答案