分析 (1)运用乘法的分配律进行简算;
(2)利用等差数列求和公式:(首项+末项)×项数÷2,进行简算;
(3)先把前第一和第二个乘法算式用乘法分配律计算,然后再用乘法分配律进行简算;
(4)原式化成$\frac{1}{3}$(1×2×3)+$\frac{1}{3}$(2×3×4-1×2×3)+$\frac{1}{3}$(3×4×5-2×3×4)+$\frac{1}{3}$(4×5×6-3×4×5)+…+$\frac{1}{3}$(49×50×51-48×49×50)+$\frac{1}{3}$(50×51×52-49×50×51),再运用乘法的分配律进行简算.
解答 解:(1)0.036×27+3.6×0.25+0.36×4.8
=3.6×0.27+3.6×0.25+3.6×0.48
=3.6×(0.27+0.25+0.48)
=3.6×1
=3.6;
(2)3+6+9+12+…+108
=(3+108)×[(108-3)÷3+1]÷2
=111××[105÷3+1]÷2
=111××[35+1]÷2
=111×36÷2
=3996÷2
=1998;
(3)3.42×76.3+9.18×23.7+76.3×5.76
=3.42×76.3+7.63×57.6+9.18×23.7
=7.63×(34.2+57.6)+9.18×23.7
=7.63×91.8+91.8×2.37
=(7.63+2.37)×91.8
=10×91.8
=918;
(4)1×2+2×3+3×4+4×5+…+49×50+50×51
=$\frac{1}{3}$(1×2×3)+$\frac{1}{3}$(2×3×4-1×2×3)+$\frac{1}{3}$(3×4×5-2×3×4)+$\frac{1}{3}$(4×5×6-3×4×5)+…+$\frac{1}{3}$(49×50×51-48×49×50)+$\frac{1}{3}$(50×51×52-49×50×51)
=$\frac{1}{3}$(1×2×3+2×3×4-1×2×3+3×4×5-2×3×4+4×5×6-3×4×5+…+49×50×51-48×49×50+50×51×52-49×50×51)
=$\frac{1}{3}$(50×51×52)
=$\frac{1}{3}$×132600
=44200.
点评 仔细观察题目中数字构成的特点和规律,运用运算定律或运算技巧,进行简便计算.
科目:小学数学 来源: 题型:填空题
查看答案和解析>>
科目:小学数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com