【题目】(4分)把一片均匀生长的大草地分成三块,面积分别为5公顷、15公顷和24公顷.如果第一块草地可以供10头牛吃30天,第二块草地可以供28头牛吃45天,那么第三块草地可以供多少头牛吃80天?
【答案】42头
【解析】
试题分析:这是一道比较复杂的牛吃草问题.把每头牛每天吃的草看作1份,因为第一块草地5公顷面积原有草量+5公顷面积30天长的草=10×30=300份,所以每公顷面积原有草量和每公顷面积30天长的草是300÷5=60份;因为第二块草地15公顷面积原有草量+15公顷面积45天长的草=28×45=1260份,所以每公顷面积原有草量和每公顷面积45天长的草是1260÷15=84份,所以45﹣30=15天,每公顷面积长84﹣60=24份;则每公顷面积每天长24÷15=1.6份.所以,每公顷原有草量60﹣30×1.6=12份,第三块地面积是24公顷,所以每天要长1.6×24=38.4份,原有草就有24×12=288份,新生长的每天就要用38.4头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=3.6头牛所以,一共需要38.4+3.6=42头牛来吃.
解:设每头牛每天的吃草量为1,则每公顷30天的总草量为:10×30÷5=60;
每公顷45天的总草量为:28×45÷15=84;
那么每公顷每天的新生长草量为(84﹣60)÷(45﹣30)=1.6;
每公顷原有草量为:60﹣1.6×30=12;
那么24公顷原有草量为:12×24=288;
24公顷80天新长草量为24×1.6×80=3072;
24公顷80天共有草量3072+288=3360;
所以有3360÷80=42(头).
答:第三块地可供42头牛吃80天.
科目:小学数学 来源: 题型:
【题目】(4分)有一片牧场,草每天都在均匀地生长.如果在牧场上放养18头牛,那么10天能把草吃完;如果只放养24头牛,那么7天就把草吃完了,请问:
(1)如果放养32头牛,多少天可以把草吃完?
(2)要放养多少头牛,才能恰好14天把草吃完?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com