相关习题
 0  65062  65070  65076  65080  65086  65088  65092  65098  65100  65106  65112  65116  65118  65122  65128  65130  65136  65140  65142  65146  65148  65152  65154  65156  65157  65158  65160  65161  65162  65164  65166  65170  65172  65176  65178  65182  65188  65190  65196  65200  65202  65206  65212  65218  65220  65226  65230  65232  65238  65242  65248  65256  366461 

科目: 来源: 题型:

计算sin49°-cos41°的结果为(  )
A、
1
2
B、-
1
2
C、1
D、0

查看答案和解析>>

科目: 来源: 题型:

Rt△ABC中,a=4,b=3,c=5,则tanA的值是(  )
A、
3
4
B、
4
3
C、0.6
D、
4
5

查看答案和解析>>

科目: 来源: 题型:

在平面内,先将一个多边形以点O为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为k,并且原多边形上的任一点P,它的对应点P′在线段OP或其延长线上;接着将所得多边形以点O为旋转中心,逆时针旋转一个角度θ,这种经过和旋转的图形变换叫做旋转相似变换,记为O(k,θ),其中点O叫做旋转相似中心,k叫做相似比,θ叫做旋转角.
(1)填空:
①如图1,将△ABC以点A为旋转相似中心,放大为原来的2倍,再逆时针旋转60°,得到△ADE,这个旋转相似变换记为A(
 
 
);
②如图2,△ABC是边长为1cm的等边三角形,将它作旋转相似变换A(
3
,90°),得到△ADE,则线段BD的长为
 
cm;
(2)如图3,分别以锐角三角形ABC的三边AB,BC,CA为边向外作正方形ADEB,BFGC,CHIA,点O1,O2,O3分别是这三个正方形的对角线交点,试分别利用△AO1O3与△ABI,△CIB与△CAO2之间的关系,运用旋转相似变换的知识说明线段O1O3与AO2之间的关系.精英家教网

查看答案和解析>>

科目: 来源: 题型:

精英家教网如图,在△ABC中,∠BAC=90°,AD是BC边上的高,E是BC边上的一个动点(不与B,C重合),EF⊥AB,EG⊥AC,垂足分别为F,G.
(1)求证:
EG
AD
=
CG
CD

(2)FD与DG是否垂直?若垂直,请给出证明;若不垂直,请说明理由;
(3)当AB=AC时,△FDG为等腰直角三角形吗?并说明理由.

查看答案和解析>>

科目: 来源: 题型:

23、如图,在△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD,E为垂足,连接AE.
(1)写出图中所有相等的线段,并选择其中一对给予证明;
(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

王大伯要做一张如图1的梯子,梯子共有8级互相平行的踏板,每相邻两级踏板之间的距离都相等.已知梯子最上面一级踏板的长度A1B1=0.5m,最下面一级踏板的长度A8B8=0.8m.木工师傅在制作这些踏板时,截取的木板要比踏板长,以保证在每级踏板的两个外端各做出一个长为4cm的榫头(如图2所示),以此来固定踏板.现市场上有长度为2.1m的木板可以用来制作梯子的踏板(木板的宽厚和厚度正好符合要制作梯子踏板的要求),请问:制作这些踏板,王大伯最少精英家教网需要买几块这样的木板?请说明理由.(不考虑锯缝的损耗)

查看答案和解析>>

科目: 来源: 题型:

精英家教网如图,梯形ABCD中,AD∥BC,AC与BD相交于O点,过点B作BE∥CD交CA的延长线于点E.求证:OC2=OA•OE.

查看答案和解析>>

科目: 来源: 题型:

图(1)是一个10×10格点正方形组成的网格.△ABC是格点三角形(顶点在网格交点处),请你完成下面的两个问题:
(1)在图(1)中画出与△ABC相似的格点△A1B1C1和△A2B2C2,且△A1B1C1与△ABC的相似比是2,△A2B2C2与△ABC的相似比是
2
2

(2)在图(2)中用与△ABC,△A1B1C1,△A2B2C2全等的格点三角形(每个三角形至少使用一次),拼出一个你熟悉的图案,并为你设计的图案配一句贴切的解说词.
精英家教网

查看答案和解析>>

科目: 来源: 题型:

精英家教网如图是一个边长为1的正方形组成的网络,△ABC与△A1B1C1都是格点三角形(顶点在网格交点处),并且△ABC∽△A1B1C1,则△ABC与△A1B1C1的相似比是
 

查看答案和解析>>

科目: 来源: 题型:

17、如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB,BC,CA至点A1,B1,C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1,B1,C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,记其面积为S2;…;按此规律继续下去,可得到△A5B5C5,则其面积S5=
195

查看答案和解析>>

同步练习册答案