相关习题
 0  264967  264975  264981  264985  264991  264993  264997  265003  265005  265011  265017  265021  265023  265027  265033  265035  265041  265045  265047  265051  265053  265057  265059  265061  265062  265063  265065  265066  265067  265069  265071  265075  265077  265081  265083  265087  265093  265095  265101  265105  265107  265111  265117  265123  265125  265131  265135  265137  265143  265147  265153  265161  266669 

科目: 来源: 题型:

【题目】如图,已知四棱锥的底面为直角梯形,平面平面,且的中点分别是

(Ⅰ)求证:平面

(Ⅱ)求点到平面的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

1)当时,求函数的单调区间和极值;

2)若上是单调增函数,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C的参数方程为:为参数,已知直线,直线以坐标原点为极点,x轴正半轴为极轴,建立极坐标系.

1)求曲线C以及直线的极坐标方程;

2)若直线与曲线C分别交于OA两点,直线与曲线C分别交于OB两点,求的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数fxx2+ax+lnxaR

1)讨论函数fx)的单调性;

2)若fx)存在两个极值点x1x2|x1x2|,求|fx1)﹣fx2|的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆C的中心在坐标原点O,其右焦点为F10),以坐标原点O为圆心,椭圆短半轴长为半径的圆与直线xy0的相切.

1)求椭圆C的方程;

2)经过点F的直线l1l2分别交椭圆CABCD四点,且l1l2,探究:是否存在常数λ,使恒成立.

查看答案和解析>>

科目: 来源: 题型:

【题目】为评估设备生产某种零件的性能,从设备生产该零件的流水线上随机抽取100个零件为样本,测量其直径后,整理得到下表:

经计算,样本的平均值,标准差,以频率值作为概率的估计值.

(I)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行判定(表示相应事件的概率):

.

判定规则为:若同时满足上述三个式子,则设备等级为甲;若仅满足其中两个,则等级为乙,若仅满足其中一个,则等级为丙;若全部都不满足,则等级为了.试判断设备的性能等级.

(Ⅱ)将直径尺寸在之外的零件认定为是“次品”.

①从设备的生产流水线上随机抽取2个零件,求其中次品个数的数学期望

②从样本中随意抽取2个零件,求其中次品个数的数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】在四棱锥PABCD中,平面PAC⊥平面ABCD,且有ABDCACCDDAAB.

1)证明:BCPA

2)若PAPCAC,求平面PAD与平面PBC所成的锐二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知Sn为数列{an}的前n项和,且Sn+22annN*.

1)求数列{an}的通项公式;

2)令bn,设数列{bn}的前项和为Tn,若Tn,求n的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】直线lxty+10t0)和抛物线Cy24x相交于不同两点AB,设AB的中点为M,抛物线C的焦点为F,以MF为直径的圆与直线l相交另一点为N,且满足|MN||NF|,则直线l的方程为_____.

查看答案和解析>>

科目: 来源: 题型:

【题目】“新冠肺炎”爆发后,某医院由甲、乙、丙、丁、戊5位医生组成的专家组到某市参加抗击疫情.五位医生去乘高铁,按规定每位乘客在进站前都需要安检,当时只有3个安检口开通,且没有其他旅客进行安检.5位医生分别从3个安检口进行安检,每个安检口都有医生去安检且不同的安检顺序视为不同的安检,则甲、乙2位医生不在同一个安检口进行安检的概率为_____.

查看答案和解析>>

同步练习册答案
关 闭