相关习题
 0  363663  363671  363677  363681  363687  363689  363693  363699  363701  363707  363713  363717  363719  363723  363729  363731  363737  363741  363743  363747  363749  363753  363755  363757  363758  363759  363761  363762  363763  363765  363767  363771  363773  363777  363779  363783  363789  363791  363797  363801  363803  363807  363813  363819  363821  363827  363831  363833  363839  363843  363849  363857  366461 

科目: 来源: 题型:

【题目】如图,抛物线y=x22x+3的图象与x轴交于A.B两点(A在点B的左边),与y轴交于点C,点D为抛物线的顶点.

(1)求点A. B.C的坐标;

(2)判断以点ACD为顶点的三角形的形状,并说明理由;

(3)M(m0)为线段AB上一点(M不与点A.B重合),过点Mx轴的垂线,与直线AC交于点E,与抛物线交于点P,过点PPQAB交抛物线于点Q,过点QQNx轴于点N,可得矩形PQNM.如图,点P在点Q左边,试用含m的式子表示矩形PQNM的周长.

查看答案和解析>>

科目: 来源: 题型:

【题目】(本题8分)如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.

(1)求此抛物线的解析式;

(2)直接写出点C和点D的坐标;

(3)若点P在第一象限内的抛物线上,且S△ABP=4S△COE,求P点坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量(件与销售价(元/件)之间的函数关系如图所示.

(1)求之间的函数关系式,并写出自变量的取值范围;

(2)求每天的销售利润W(元与销售价(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知在平面直角坐标系中,二次函数 y=x2+2x+2k﹣2 的图象与 x 轴有两个交点.

(1) k 的取值范围;

(2) k 取正整数时,请你写出二次函数 y=x2+2x+2k﹣2 的表达式,并求出此二次函数图象与 x 轴的两个交点坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知二次函数y=x2-6x+8.求:

(1)抛物线与x轴和y轴相交的交点坐标;

(2)抛物线的顶点坐标;

(3)画出此抛物线图象,利用图象回答下列问题:

①方程x2-6x+8=0的解是什么?

②x取什么值时,函数值大于0?

③x取什么值时,函数值小于0?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,将抛物线y=x2+2x+8的图象x轴上方的部分沿x轴折到x轴下方,图象的其余部分不变,得到一个新图象(实线部分);点P(aka-1)在该函数上,若这样的点P恰好有3个,则k的值为_____.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线m:y=ax2+b(a<0,b>0)与x轴于点A、B(点A在点B的左侧),与y轴交于点C.将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为C1,与x轴的另一个交点为A1.若四边形AC1A1C为矩形,则a,b应满足的关系式为(  )

A. ab=﹣2 B. ab=﹣3 C. ab=﹣4 D. ab=﹣5

查看答案和解析>>

科目: 来源: 题型:

【题目】如图是抛物线y1=ax2+bx+ca≠0)图象的一部分,抛物线的顶点坐标A13),与x轴的一个交点B40),直线y2=mx+nm≠0)与抛物线交于AB两点,下列结论:

①2a+b=0②abc0方程ax2+bx+c=3有两个相等的实数根;抛物线与x轴的另一个交点是(﹣10);1x4时,有y2y1

其中正确的是( )

A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,四边形为正方形,上一点,将正方形折叠,使点与点重合,折痕为相交于点,若.求:

(1)的面积;

(2)的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.

(1)求sinB的值;

(2)如果CD=,求BE的值.

查看答案和解析>>

同步练习册答案