相关习题
 0  66468  66476  66482  66486  66492  66494  66498  66504  66506  66512  66518  66522  66524  66528  66534  66536  66542  66546  66548  66552  66554  66558  66560  66562  66563  66564  66566  66567  66568  66570  66572  66576  66578  66582  66584  66588  66594  66596  66602  66606  66608  66612  66618  66624  66626  66632  66636  66638  66644  66648  66654  66662  366461 

科目: 来源: 题型:

如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A (-15,0),AB=25,AC=15,点C在第二象限,点P是y轴上的一个动点,连接AP,并把△AOP绕着点A逆时钟方向旋转.使边AO与AC重合.得到△ACD.
(1)求直线AC的解析式;
(2)当点P运动到点(0,5)时,求此时点D的坐标及DP的长;
(3)是否存在点P,使△OPD的面积等于5?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.精英家教网

查看答案和解析>>

科目: 来源: 题型:

我市“建设社会主义新农村”工作组到某乡大棚蔬菜生产基地指导菜农修建大棚种植蔬菜.通过调查得知:平均修建每公顷大棚要用支架、农膜等材料费2.7万元;购置滴灌设备,其费用p(万元)与大棚面积x(公顷)的函数关系式为p=0.9x2;另外每公顷种植蔬菜需种子、化肥、农药等开支0.3万元.每公顷蔬菜年均可卖7.5万元.
(1)基地的菜农共修建大棚x(公顷),当年收益(扣除修建和种植成本后)为y(万元),写出y关于x的函数关系式.
(2)若某菜农期望通过种植大棚蔬菜当年获得5万元收益,工作组应建议他修建多少公顷大棚.(用分数表示即可)
(3)种子、化肥、农药每年都需要投资,其它设施3年内不需再投资.如果按3年计算,是否修建大棚面积越大收益越大?修建面积为多少时可以得到最大收益?请帮工作组为基地修建大棚提一项合理化建议.

查看答案和解析>>

科目: 来源: 题型:

精英家教网操作:正方体涂色:如图,用白萝卜做成一个正方体,并把正方体表面涂成灰颜色.
探究:把正方体的棱三等分,然后沿等分线把正方体切开,得到27块小正方体.小正方体表面各面无涂色、一面涂色、两面涂色、三面涂色的个数分别是
 
 
 
 

应用:①小明从上述的27块萝卜中任取一块,求只有两面涂色的概率.
②小明和弟弟在做游戏,规则是:从上述的27块萝卜中任取一块,若他有奇数个面涂色时,小明赢;否则弟弟赢,你认为这样的游戏规则公平吗?为什么?

查看答案和解析>>

科目: 来源: 题型:

已知:二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中点A的坐标是(-1精英家教网,0),与y轴负半轴交于点C,其对称轴是直线x=
32
,tan∠BAC=2.
(1)求二次函数y=ax2+bx+c的解析式;
(2)作圆O’,使它经过点A、B、C,点E是AC延长线上一点,∠BCE的平分线CD交圆O’于点D,连接AD、BD,求△ACD的面积;
(3)在(2)的条件下,二次函数y=ax2+bx+c的图象上是否存在点P,使得∠PDB=∠CAD?如果存在,请求出所有符合条件的P点坐标;如果不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

精英家教网已知,如图,AD为Rt△ABC斜边BC上的高,点E为DA延长线上一点,连接BE,过点C作CF⊥BE于点F,交AB、AD于M、N两点.
(1)若线段AM、AN的长是关于x的一元二次方程x2-2mx+n2-mn+
5
4
m2=0的两个实数根,求证:AM=AN;
(2)若AN=
15
8
,DN=
9
8
,求DE的长;
(3)若在(1)的条件下,S△AMN:S△ABE=9:64,且线段BF与EF的长是关于y的一元二次方程5y2-16ky+10k2+5=0的两个实数根,求BC的长.

查看答案和解析>>

科目: 来源: 题型:

2006年春,我市为美化市容,开展城市绿化活动,要种植一种新品种树苗.甲、乙两处育苗基地均以每株4元的价格出售这种树苗,并对一次性购买该种树苗不低于1000株的用户均实行优惠:甲处的优惠政策是每株树苗按原价的八折出售;乙处的优惠政策是免收所购树苗中150株的费用,其余树苗按原价的九折出售.
(1)规定购买该种树苗只能在甲、乙两处中的一处购买,设一次性购买x(x≥1000且x为整数)株该种树苗,若在甲处育苗基地购买,所花的费用为y1元,写出y1与x之间的函数关系式;若在乙处育苗基地购买,所花的费用为y2元,写出y2与x之间的函数关系式;(两个函数关系式均不要求写出自变量x的取值范围)
(2)若在甲、乙两处分别一次性购买1500株该种树苗,在哪一处购买所花的费用少,为什么?
(3)若在甲育苗基地以相应的优惠方式购买一批该种树苗,又在乙育苗基地以相应的优惠方式购买另一批该种树苗,两批树苗共2500株,购买这2500株树苗所花的费用至少需要多少元?这时应在甲、乙两处分别购买该种树苗多少株?

查看答案和解析>>

科目: 来源: 题型:

已知:如图,圆O1与圆O2外切于点P,经过圆O1上一点A作圆O1的切线交圆O2于B、C两点,直精英家教网线AP交圆O2于点D,连接DC、PC.
(1)求证:DC2=DP•DA;
(2)若圆O1与圆O2的半径之比为1:2,连接BD,BD=4
6
,PD=12,求AB的长.

查看答案和解析>>

科目: 来源: 题型:

25、某中学为了了解全校1000名学生参加课外锻炼的情况,从中抽查了50名学生一周内平均每天参加课外锻炼的时间(单位为分钟,且取整数),将抽查得到的数据进行适当整理,分成5组(第1小组是10.5-20.5,第2小组是20.5-30.5,第3小组是30.5-40.5,第4小组是40.5-50.5,第5小组是50.5-60.5),列出了下面未完成的频率分布表.
(1)填写频率分布表中的空格(只需填表,不要求说明理由);
(2)本次抽查得到的数据的中位数落在哪一小组内?(不要求说明理由)
(3)由本次抽查结果估计这所学校约有多少名学生平均每天参加课外锻炼的时间多于40分钟?

查看答案和解析>>

科目: 来源: 题型:

如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).精英家教网

查看答案和解析>>

科目: 来源: 题型:

精英家教网已知:如图,点E为正方形ABCD的边AD上一点,连接BE,过点A作AH⊥BE,垂足为H,延长AH交CD于点F.
求证:DE=CF.

查看答案和解析>>

同步练习册答案