相关习题
 0  290745  290753  290759  290763  290769  290771  290775  290781  290783  290789  290795  290799  290801  290805  290811  290813  290819  290823  290825  290829  290831  290835  290837  290839  290840  290841  290843  290844  290845  290847  290849  290853  290855  290859  290861  290865  290871  290873  290879  290883  290885  290889  290895  290901  290903  290909  290913  290915  290921  290925  290931  290939  366461 

科目: 来源: 题型:解答题

2.在△ABC中,∠C>∠B.
(1)如图①,AD⊥BC于点D,AE平分∠BAC,证明:∠EAD=$\frac{1}{2}$(∠C-∠B).
(2)如图②,AE平分∠BAC,F为AE上的一点,且FD⊥BC于点D,这时∠EFD与∠B、∠C有何数量关系?请说明理由;
(3)如图③,AE平分∠BAC,F为AE延长线上的一点,FD⊥BC于点D,请你写出这时∠AFD与∠B、∠C之间的数量关系(只写结论,不必说明理由).

查看答案和解析>>

科目: 来源: 题型:解答题

1.把如图所示的图形分成4个全等的图形.

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图所示,AB为⊙O的直径,D为$\widehat{AC}$的中点,AC、BD交于点E,P为BD延长线上一点,且PD=DE.
(1)求证:PA与⊙O相切.
(2)若AB=10,$\frac{BE}{DE}$=$\frac{7}{9}$,求CE的长.

查看答案和解析>>

科目: 来源: 题型:解答题

10.在△ABC中,AB=AC,∠BAC=2∠DAE=2α.
(1)如图1,若点D关于直线AE的对称点为F,求证:△ABD≌△ACF;
(2)如图2,在(1)的条件下,若α=45°,求证:DE2=BD2+CE2
(3)如图3,若α=45°,点E在BC的延长线上,请直接写出DE2,BD2,CE2三者之间的等量关系.

查看答案和解析>>

科目: 来源: 题型:填空题

9.已知△ABC为等边三角形,以AB为斜边作Rt△ADB,∠ADB=90°,AD=1且∠ABD=15°,则点C到BD的距离为$2+\sqrt{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,三个L型图都是由四个大小相同的小正方形组成,请你分别在这三个图中各添画一个小正方形,使它们成为三个不同的轴对称图形.

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,与y轴交于点C,三个交点的坐标分别为A(-1,0),B(3,0),C(0,3).
(1)求抛物线的解析式及顶点D的坐标;
(2)若P为线段BD上的一个动点,过点P作PM⊥x轴于点M,求四边形PMAC面积的最大值和此时P点的坐标;
(3)若点P是抛物线在第一象限上的一个动点,过点P作PQ∥AC交x轴于点Q.当点P的坐标为(2,3)时,四边形PQAC是平行四边形;(直接写出结果,不写求解过程).

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图,在平面直角坐标系中,一次函数y=ax-1(a≠0)的图象与x轴交于点C,与y轴交于点D,与反比例函数y=$\frac{k}{x}$(k≠0)的图象交于第二、四象限内的A、B两点,点B的坐标是(3,m),连接OB,tan∠BOD=$\frac{3}{4}$.
(1)求m的值和一次函数的解析式;
(2)在y轴上找一点P,使得△ACP的面积是△AOB的面积的3倍,求出点P的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图,在平面直角坐标中,点O是坐标原点,一次函数y1=-x+4与反比例函数y2=$\frac{k}{x}$(x>0)的图象交于A(1,m)、B(n,1)两点.
(1)求k、m、n的值.
(2)根据图象写出当y1>y2时,x的取值范围.
(3)若一次函数图象与x轴、y轴分别交于点N、M,则求出△AON的面积.

查看答案和解析>>

科目: 来源: 题型:选择题

4.下列说法正确的是(  )
A.飞机上升9000米,再上升-5000米,则飞机实际上升4000米
B.一个正数,一个负数,它们表示的意义一定相反
C.0是最小的有理数
D.正数和负数统称为有理数

查看答案和解析>>

同步练习册答案